Automatic Thrombus Detection in Non-enhanced Computed Tomography Images in Patients With Acute Ischemic Stroke

P. Löber, B. Stimpel, C. Syben, A. Maier, H. Ditt, P. Schramm, B. Raczkowski, A. Kemmling

Abstract

In case of an ischemic stroke, identifying and removing blood clots is crucial for a successful recovery. We present a novel method to automatically detect vascular occlusion in non-enhanced computed tomography (NECT) images. Possible hyperdense thrombus candidates are extracted by thresholding and connected component clustering. A set of different features is computed to describe the objects, and a Random Forest classifier is applied to predict them. Thrombus classification yields 98.7% sensitivity with 6.7 false positives per volume, and 91.1% sensitivity with 2.7 false positives per volume. The classifier assigns a clot probability ≥ 90% for every thrombus with a volume larger than 100 mm3 or with a length above 23 mm, and can be used as a reliable method to detect blood clots.

OriginalspracheEnglisch
Seiten125-129
Seitenumfang5
DOIs
PublikationsstatusVeröffentlicht - 2017
Veranstaltung2017 Eurographics Workshop on Visual Computing for Biology and Medicine - Bremen, Deutschland
Dauer: 07.09.201708.09.2017
Konferenznummer: 160311

Tagung, Konferenz, Kongress

Tagung, Konferenz, Kongress2017 Eurographics Workshop on Visual Computing for Biology and Medicine
KurztitelVCBM 2017
Land/GebietDeutschland
OrtBremen
Zeitraum07.09.1708.09.17

Strategische Forschungsbereiche und Zentren

  • Forschungsschwerpunkt: Biomedizintechnik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Automatic Thrombus Detection in Non-enhanced Computed Tomography Images in Patients With Acute Ischemic Stroke“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren