Automatic segmentation of the pulmonary lobes with a 3D u-net and optimized loss function

Bianca Lassen-Schmidt, Alessa Denise Hering, Stefan Krass, Hans Meine

Abstract

Fully-automatic lung lobe segmentation is challenging due to anatomical variations, pathologies, and incomplete fissures. We trained a 3D u-net for pulmonary lobe segmentation on 49 mainly publically available datasets and introduced a weighted Dice loss function to emphasize the lobar boundaries. To validate the performance of the proposed method we compared the results to two other methods. The new loss function improved the mean distance to 1.46 mm (compared to 2.08 mm for simple loss function without weighting).

OriginalspracheEnglisch
DOIs
PublikationsstatusVeröffentlicht - 29.05.2020
VeranstaltungMedical Imaging with Deep Learning 2020 - Montréal, Montréal, Kanada
Dauer: 06.07.202009.07.2020
https://2020.midl.io/

Tagung, Konferenz, Kongress

Tagung, Konferenz, KongressMedical Imaging with Deep Learning 2020
KurztitelMIDL 2020
Land/GebietKanada
OrtMontréal
Zeitraum06.07.2009.07.20
Internetadresse

Zitieren