Abstract
Fully-automatic lung lobe segmentation is challenging due to anatomical variations, pathologies, and incomplete fissures. We trained a 3D u-net for pulmonary lobe segmentation on 49 mainly publically available datasets and introduced a weighted Dice loss function to emphasize the lobar boundaries. To validate the performance of the proposed method we compared the results to two other methods. The new loss function improved the mean distance to 1.46 mm (compared to 2.08 mm for simple loss function without weighting).
Originalsprache | Englisch |
---|---|
DOIs | |
Publikationsstatus | Veröffentlicht - 29.05.2020 |
Veranstaltung | Medical Imaging with Deep Learning 2020 - Montréal, Montréal, Kanada Dauer: 06.07.2020 → 09.07.2020 https://2020.midl.io/ |
Tagung, Konferenz, Kongress
Tagung, Konferenz, Kongress | Medical Imaging with Deep Learning 2020 |
---|---|
Kurztitel | MIDL 2020 |
Land/Gebiet | Kanada |
Ort | Montréal |
Zeitraum | 06.07.20 → 09.07.20 |
Internetadresse |