Augmented likelihood image reconstruction with non-local prior image regularization

Abstract

The presence of high-density objects remains an open problem in medical CT imaging. The recently published Augmented Likelihood Image Reconstruction (ALIR) algorithm has shown to outperform current methods for phantom data and real clinical cases of patients with different kinds of metal implants. A variation of the algorithm with an additional non-local prior image based regularization term is proposed. The prior image should hold anatomical information that are similar to the target image. In every iteration of the ALIR algorithm, a new image is calculated based on the given prior image and a registration step. The resulting image is then used to penalize intensity variations. Reconstruction results show that the regularization step improved the reduction of streaking artifacts.
OriginalspracheEnglisch
Seiten145-148
Seitenumfang4
PublikationsstatusVeröffentlicht - 01.2016
Veranstaltung4th International Conference on Image Formation in X-Ray Computed Tomography - Bamberg, Deutschland
Dauer: 18.07.201622.07.2016
http://ctmeeting.shpci.org/?p=program

Tagung, Konferenz, Kongress

Tagung, Konferenz, Kongress4th International Conference on Image Formation in X-Ray Computed Tomography
Land/GebietDeutschland
OrtBamberg
Zeitraum18.07.1622.07.16
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Augmented likelihood image reconstruction with non-local prior image regularization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren