Abstract
Unerwünschte Arzneimittelwirkungen zählen zu den häufigen Todesursachen. Aufgabe der Pharmakovigilanz ist es, Arzneimittel nach der Zulassung zu überwachen, um so mögliche Risiken aufzudecken. Zu diesem Zweck werden typischerweise Spontanmelderegister genutzt, an die u. a. Ärzte und pharmazeutische Industrie Berichte über unerwünschte Arzneimittelwirkungen (UAW) melden. Diese Register sind jedoch nur begrenzt geeignet, um potenzielle Sicherheitsrisiken zu identifizieren. Eine andere, möglicherweise informativere Datenquelle sind Abrechnungsdaten der gesetzlichen Krankenversicherungen (GKV), die nicht nur den Gesundheitszustand eines Patienten im Längsschnitt erfassen, sondern auch Informationen zu Begleitmedikationen und Komorbiditäten bereitstellen.
Um deren Potenzial nutzen zu können und so zur Verbesserung der Arzneimittelsicherheit beizutragen, sollen statistische Methoden weiterentwickelt werden, die sich in anderen Anwendungsgebieten bewährt haben. So steht eine große Bandbreite von Methoden für die Auswertung von Spontanmeldedaten zur Verfügung: Diese sollen zunächst umfassend verglichen und anschließend hinsichtlich ihrer Nutzbarkeit für longitudinale Daten erschlossen werden. Des Weiteren wird aufgezeigt, wie maschinelle Lernverfahren helfen könnten, seltene Risiken zu identifizieren. Zudem werden sogenannte Enrichment-Analysen eingesetzt, mit denen pharmakologische Arzneimittelgruppen und verwandte Komorbiditäten zusammengefasst werden können, um vulnerable Bevölkerungsgruppen zu identifizieren.
Insgesamt werden diese Methoden die Arzneimittelrisikoforschung anhand von GKV-Routinedaten vorantreiben, die aufgrund ihres Umfangs, der longitudinalen Erfassung sowie ihrer Aktualität eine vielversprechende Datenquelle bieten, um UAWs aufzudecken.
Um deren Potenzial nutzen zu können und so zur Verbesserung der Arzneimittelsicherheit beizutragen, sollen statistische Methoden weiterentwickelt werden, die sich in anderen Anwendungsgebieten bewährt haben. So steht eine große Bandbreite von Methoden für die Auswertung von Spontanmeldedaten zur Verfügung: Diese sollen zunächst umfassend verglichen und anschließend hinsichtlich ihrer Nutzbarkeit für longitudinale Daten erschlossen werden. Des Weiteren wird aufgezeigt, wie maschinelle Lernverfahren helfen könnten, seltene Risiken zu identifizieren. Zudem werden sogenannte Enrichment-Analysen eingesetzt, mit denen pharmakologische Arzneimittelgruppen und verwandte Komorbiditäten zusammengefasst werden können, um vulnerable Bevölkerungsgruppen zu identifizieren.
Insgesamt werden diese Methoden die Arzneimittelrisikoforschung anhand von GKV-Routinedaten vorantreiben, die aufgrund ihres Umfangs, der longitudinalen Erfassung sowie ihrer Aktualität eine vielversprechende Datenquelle bieten, um UAWs aufzudecken.
Titel in Übersetzung | Detection of drug risks after approval: Methods development for the use of routine statutory health insurance data |
---|---|
Originalsprache | Deutsch |
Zeitschrift | Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz |
Jahrgang | 61 |
Ausgabenummer | 9 |
Seiten (von - bis) | 1075-1081 |
Seitenumfang | 7 |
ISSN | 1436-9990 |
DOIs | |
Publikationsstatus | Veröffentlicht - 01.09.2018 |
Strategische Forschungsbereiche und Zentren
- Forschungsschwerpunkt: Gehirn, Hormone, Verhalten - Center for Brain, Behavior and Metabolism (CBBM)