Assembling polyhedra with single translations

Randall H. Wilson, Achim Schweikard

Abstract

The problem of partitioning an assembly of polyhedral objects into two subassemblies that can be separated arises in assembly planning. The authors describe an algorithm to compute the set of all translations separating two polyhedra with n vertices in O(n4) steps and show that this is optimal. Given an assembly of k polyhedra with a total of n vertices, an extension of this algorithm identifies a valid translation and removable subassembly in O(k2n4) steps if one exists. Based on the second algorithm, a polynomial time method for finding a complete assembly sequence consisting of single translations is derived. An implementation incorporates several changes to achieve better average-case performances. Experimental results obtained for composite objects consisting of isothetic polyhedra are described.

OriginalspracheEnglisch
Seiten2392-2397
Seitenumfang6
PublikationsstatusVeröffentlicht - 01.12.1992
VeranstaltungProceedings of the 1992 IEEE International Conference on Robotics and Automation
- Nice, Frankreich
Dauer: 12.05.199214.05.1992
Konferenznummer: 17601

Tagung, Konferenz, Kongress

Tagung, Konferenz, KongressProceedings of the 1992 IEEE International Conference on Robotics and Automation
Land/GebietFrankreich
OrtNice
Zeitraum12.05.9214.05.92

Zitieren