Approximation properties of periodic multivariate quasi-interpolation operators

Yurii Kolomoitsev*, Jürgen Prestin

*Korrespondierende/r Autor/-in für diese Arbeit
2 Zitate (Scopus)

Abstract

We study approximation properties of general multivariate periodic quasi-interpolation operators, which are generated by distributions/functions φ˜j and trigonometric polynomials φj. The class of such operators includes classical interpolation polynomials (φ˜j is the Dirac delta function), Kantorovich-type operators (φ˜j is a characteristic function), scaling expansions associated with wavelet constructions, and others. Under different compatibility conditions on φ˜j and φj, we obtain upper and lower bound estimates for the Lp-error of approximation by quasi-interpolation operators in terms of the best and best one-sided approximation, classical and fractional moduli of smoothness, K-functionals, and other terms.

OriginalspracheEnglisch
Aufsatznummer105631
ZeitschriftJournal of Approximation Theory
Jahrgang270
ISSN0021-9045
DOIs
PublikationsstatusVeröffentlicht - 10.2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Approximation properties of periodic multivariate quasi-interpolation operators“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren