Approximate Query Answering in Complex Gaussian Mixture Models

Mattis Hartwig, Marcel Gehrke, Ralf Möller

Abstract

Gaussian mixture models are widely used in a diverse range of research fields. If the number of components and dimensions grow high, the computational costs for answering queries become unreasonably high for practical use. Therefore approximation approaches are necessary to make complex Gaussian mixture models more usable. The need for approximation approaches is also driven by the relatively recent representations that theoretically allow unlimited number of mixture components (e.g. nonparametric Bayesian networks or infinite mixture models). In this paper we introduce an approximate inference algorithm that splits the existing algorithm for query answering into two steps and uses the knowledge from the first step to reduce unnecessary calculations in the second step while maintaining a defined error bound. In highly complex mixture models we observed significant time savings even with low error bounds.

OriginalspracheEnglisch
Titel2019 IEEE International Conference on Big Knowledge (ICBK)
Seitenumfang6
Herausgeber (Verlag)IEEE
Erscheinungsdatum11.2019
Seiten81-86
Aufsatznummer8944433
ISBN (Print)978-1-7281-4608-9
ISBN (elektronisch)978-1-7281-4607-2
DOIs
PublikationsstatusVeröffentlicht - 11.2019
Veranstaltung10th IEEE International Conference on Big Knowledge - Beijing, China
Dauer: 10.11.201911.11.2019
Konferenznummer: 156494

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
  • Querschnittsbereich: Intelligente Systeme

Fingerprint

Untersuchen Sie die Forschungsthemen von „Approximate Query Answering in Complex Gaussian Mixture Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren