Answering Hindsight Queries with Lifted Dynamic Junction Trees

Marcel Gehrke, Tanya Braun, Ralf Möller

Abstract

The lifted dynamic junction tree algorithm (LDJT) efficiently answers filtering and prediction queries for probabilistic relational temporal models by building and then reusing a first-order cluster representation of a knowledge base for multiple queries and time steps. We extend LDJT to (i) solve the smoothing inference problem to answer hindsight queries by introducing an efficient backward pass and (ii) discuss different options to instantiate a first-order cluster representation during a backward pass. Further, our relational forward backward algorithm makes hindsight queries to the very beginning feasible. LDJT answers multiple temporal queries faster than the static lifted junction tree algorithm on an unrolled model, which performs smoothing during message passing.
OriginalspracheEnglisch
Seitenumfang8
PublikationsstatusVeröffentlicht - 02.07.2018
Veranstaltung27th International Joint Conference on Artificial Intelligence - Stockholm, Schweden
Dauer: 13.07.201819.07.2018
Konferenznummer: 140653

Tagung, Konferenz, Kongress

Tagung, Konferenz, Kongress27th International Joint Conference on Artificial Intelligence
Kurztitel IJCAI 2018
Land/GebietSchweden
OrtStockholm
Zeitraum13.07.1819.07.18

DFG-Fachsystematik

  • 4.43-01 Theoretische Informatik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Answering Hindsight Queries with Lifted Dynamic Junction Trees“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren