Abstract
The lifted dynamic junction tree algorithm (LDJT) efficiently answers filtering and prediction queries for probabilistic relational temporal models by building and then reusing a first-order cluster representation of a knowledge base for multiple queries and time steps. We extend LDJT to (i) solve the smoothing inference problem to answer hindsight queries by introducing an efficient backward pass and (ii) discuss different options to instantiate a first-order cluster representation during a backward pass. Further, our relational forward backward algorithm makes hindsight queries to the very beginning feasible. LDJT answers multiple temporal queries faster than the static lifted junction tree algorithm on an unrolled model, which performs smoothing during message passing.
Originalsprache | Englisch |
---|---|
Seitenumfang | 8 |
Publikationsstatus | Veröffentlicht - 02.07.2018 |
Veranstaltung | 27th International Joint Conference on Artificial Intelligence - Stockholm, Schweden Dauer: 13.07.2018 → 19.07.2018 Konferenznummer: 140653 |
Tagung, Konferenz, Kongress
Tagung, Konferenz, Kongress | 27th International Joint Conference on Artificial Intelligence |
---|---|
Kurztitel | IJCAI 2018 |
Land/Gebiet | Schweden |
Ort | Stockholm |
Zeitraum | 13.07.18 → 19.07.18 |
DFG-Fachsystematik
- 4.43-01 Theoretische Informatik