TY - JOUR
T1 - Analysis of t(9;11) chromosomal breakpoint sequences in childhood acute leukemia: Almost identical MLL breakpoints in therapy-related AML after treatment without etoposides
AU - Langer, Thorsten
AU - Metzler, Markus
AU - Reinhardt, Dirk
AU - Viehmann, Susanne
AU - Borkhardt, Arndt
AU - Reichel, Martin
AU - Stanulla, Martin
AU - Schrappe, Martin
AU - Creutzig, Ursula
AU - Ritter, Jörg
AU - Leis, Thomas
AU - Jacobs, Ulla
AU - Harbott, Jochen
AU - Beck, Jörn D.
AU - Rascher, Wolfgang
AU - Repp, Reinald
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2003/4/1
Y1 - 2003/4/1
N2 - The translocation t(9;11)(p22;q23) is a recurring chromosomal abnormality in acute myeloid leukemia (AML) fusing two genes designated as MLL and AF9. Within MLL, almost all rearrangements cluster in an 8.3-kb restricted region and fuse 5′ portions of MLL to a variety of heterologous genes in various 11q23 translocations. AF9 is one of the most common fusion partners of MLL. It spans more than 100 kb, and two breakpoint cluster regions (BCRs) have been identified in a telomeric region of intron 4 (BCR1) and within introns 7 and 8 (BCR2). We investigated 11 children's bone marrow or peripheral blood samples (3 AML, 5 t-AML, 2 ALL, 1 ALL relapse) and two cell lines (THP-1 and Mono-Mac-6) with cytogenetically diagnosed translocations t(9;11). By use of an optimized multiplex nested long-range PCR assay, a breakpoint-spanning DNA fragment from each sample was amplified and directly sequenced. In four patients and two cell lines, the AF9 breakpoints were located within BCR1 and in two patients within BCR2, respectively. However, in five patients the AF9 breakpoints were found outside the previously described BCRs within the centromeric region of intron 4 and even within intron 3 in one case. All five patients with a secondary AML, who had not received etoposides during treatment of the primary malignant disease, revealed almost identical MLL breakpoints very close to a breakage hot spot inducible by topoisomerase II inhibitors or apoptotic triggers in vitro. Sequence patterns around the breakpoints indicated involvement of a "damage-repair mechanism" in the development of t(9;11) similar to t(4;11) in infants' acute leukemia.
AB - The translocation t(9;11)(p22;q23) is a recurring chromosomal abnormality in acute myeloid leukemia (AML) fusing two genes designated as MLL and AF9. Within MLL, almost all rearrangements cluster in an 8.3-kb restricted region and fuse 5′ portions of MLL to a variety of heterologous genes in various 11q23 translocations. AF9 is one of the most common fusion partners of MLL. It spans more than 100 kb, and two breakpoint cluster regions (BCRs) have been identified in a telomeric region of intron 4 (BCR1) and within introns 7 and 8 (BCR2). We investigated 11 children's bone marrow or peripheral blood samples (3 AML, 5 t-AML, 2 ALL, 1 ALL relapse) and two cell lines (THP-1 and Mono-Mac-6) with cytogenetically diagnosed translocations t(9;11). By use of an optimized multiplex nested long-range PCR assay, a breakpoint-spanning DNA fragment from each sample was amplified and directly sequenced. In four patients and two cell lines, the AF9 breakpoints were located within BCR1 and in two patients within BCR2, respectively. However, in five patients the AF9 breakpoints were found outside the previously described BCRs within the centromeric region of intron 4 and even within intron 3 in one case. All five patients with a secondary AML, who had not received etoposides during treatment of the primary malignant disease, revealed almost identical MLL breakpoints very close to a breakage hot spot inducible by topoisomerase II inhibitors or apoptotic triggers in vitro. Sequence patterns around the breakpoints indicated involvement of a "damage-repair mechanism" in the development of t(9;11) similar to t(4;11) in infants' acute leukemia.
UR - http://www.scopus.com/inward/record.url?scp=0037377078&partnerID=8YFLogxK
U2 - 10.1002/gcc.10167
DO - 10.1002/gcc.10167
M3 - Journal articles
C2 - 12619163
AN - SCOPUS:0037377078
SN - 1045-2257
VL - 36
SP - 393
EP - 401
JO - Genes Chromosomes and Cancer
JF - Genes Chromosomes and Cancer
IS - 4
ER -