Abstract
We propose an iterative method for estimating rigid transformations from point sets using adiabatic quantum computation. Compared to existing quantum approaches, our method relies on an adaptive scheme to solve the problem to high precision, and does not suffer from inconsistent rotation matrices. Experimentally, our method performs robustly on several 2D and 3D datasets even with high outlier ratio.
Originalsprache | Englisch |
---|---|
Titel | Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
Erscheinungsdatum | 2022 |
Seiten | 529-537 |
Publikationsstatus | Veröffentlicht - 2022 |