Abstract
Proper learning from positive samples is a basic ingredient for designing secure steganographic systems for unknown covertext channels. In addition, security requirements imply that the hypothesis should not contain false positives. We present such a learner for k-term DNF formulas for the uniform distribution and a generalization to q-bounded distributions. We briefly also describe how these results can be used to design a secure stegosystem.
Originalsprache | Englisch |
---|---|
Titel | Algorithms and Computation |
Redakteure/-innen | Khaled Elbassioni, Kazuhisa Makino |
Seitenumfang | 12 |
Band | 9472 |
Herausgeber (Verlag) | Springer Verlag |
Erscheinungsdatum | 27.11.2015 |
Seiten | 151-162 |
ISBN (Print) | 978-3-662-48970-3 |
ISBN (elektronisch) | 978-3-662-48971-0 |
DOIs | |
Publikationsstatus | Veröffentlicht - 27.11.2015 |
Veranstaltung | ISAAC 2015 - Nagoya Marriott Associa Hotel , Nagoya, Japan Dauer: 09.12.2015 → 11.12.2015 http://www.al.cm.is.nagoya-u.ac.jp/isaac2015/ |