Adjustment Criteria in Causal Diagrams: An Algorithmic Perspective

Johannes Textor, Maciej Liskiewicz

Abstract

Identifying and controlling bias is a key problem in empirical sciences. Causal diagram theory provides graphical criteria for deciding whether and how causal effects can be identified from observed (nonexperimental) data by covariate adjustment. Here we prove equivalences between existing as well as new criteria for adjustment and we provide a new simplified but still equivalent notion of d-separation. These lead to efficient algorithms for two important tasks in causal diagram analysis: (1) listing minimal covariate adjustments (with polynomial delay); and (2) identifying the subdiagram involved in biasing paths (in linear time). Our results improve upon existing exponential-time solutions for these problems, enabling users to assess the effects of covariate adjustment on diagrams with tens to hundreds of variables interactively in real time.
OriginalspracheEnglisch
TitelUAI'11 Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence
Redakteure/-innenFabio Cozman, Avi Pfeffer
Seitenumfang28
ErscheinungsortArlington, Virginia, USA
Herausgeber (Verlag)AUAI Press
Erscheinungsdatum14.02.2012
Seiten661-688
ISBN (Print)ISBN: 978-0-9749039-7-2
PublikationsstatusVeröffentlicht - 14.02.2012
VeranstaltungTwenty-Seventh Conference on Uncertainty in Artificial Intelligence - Barcelona, Spanien
Dauer: 14.07.201117.07.2011

Fingerprint

Untersuchen Sie die Forschungsthemen von „Adjustment Criteria in Causal Diagrams: An Algorithmic Perspective“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren