Abstract
Multilevel strategies are an integral part of many image registration algorithms. These strategies are very well-known for avoiding undesirable local minima, providing an outstanding initial guess, and reducing overall computation time. State-of-the-art multilevel strategies build a hierarchy of discretization in the spatial dimensions. In this paper, we present a spatio-temporal strategy, where we introduce a hierarchical discretization in the temporal dimension at each spatial level. This strategy is suitable for a motion estimation problem where the motion is assumed smooth over time. Our strategy exploits the temporal smoothness among image frames by following a predictor-corrector approach. The strategy predicts the motion by a novel interpolation method and later corrects it by registration. The prediction step provides a good initial guess for the correction step, hence reduces the overall computational time for registration. The acceleration is achieved by a factor of 2.5 on average, over the state-of-the-art multilevel methods on three examined optical coherence tomography datasets.
Originalsprache | Englisch |
---|---|
Titel | 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) |
Seitenumfang | 4 |
Herausgeber (Verlag) | IEEE |
Erscheinungsdatum | 04.2020 |
Seiten | 683-686 |
Aufsatznummer | 9098520 |
ISBN (Print) | 978-1-5386-9331-5 |
ISBN (elektronisch) | 978-1-5386-9330-8 |
DOIs | |
Publikationsstatus | Veröffentlicht - 04.2020 |
Veranstaltung | 17th IEEE International Symposium on Biomedical Imaging - Iowa City, USA / Vereinigte Staaten Dauer: 03.04.2020 → 07.04.2020 Konferenznummer: 160183 |