Accelerating the Registration of Image Sequences by Spatio-Temporal Multilevel Strategies

Hari Om Aggrawal, Jan Modersitzki


Multilevel strategies are an integral part of many image registration algorithms. These strategies are very well-known for avoiding undesirable local minima, providing an outstanding initial guess, and reducing overall computation time. State-of-the-art multilevel strategies build a hierarchy of discretization in the spatial dimensions. In this paper, we present a spatio-temporal strategy, where we introduce a hierarchical discretization in the temporal dimension at each spatial level. This strategy is suitable for a motion estimation problem where the motion is assumed smooth over time. Our strategy exploits the temporal smoothness among image frames by following a predictor-corrector approach. The strategy predicts the motion by a novel interpolation method and later corrects it by registration. The prediction step provides a good initial guess for the correction step, hence reduces the overall computational time for registration. The acceleration is achieved by a factor of 2.5 on average, over the state-of-the-art multilevel methods on three examined optical coherence tomography datasets.

Titel2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
Herausgeber (Verlag)IEEE
ISBN (Print)978-1-5386-9331-5
ISBN (elektronisch)978-1-5386-9330-8
PublikationsstatusVeröffentlicht - 04.2020
Veranstaltung17th IEEE International Symposium on Biomedical Imaging
- Iowa City, USA / Vereinigte Staaten
Dauer: 03.04.202007.04.2020
Konferenznummer: 160183


Untersuchen Sie die Forschungsthemen von „Accelerating the Registration of Image Sequences by Spatio-Temporal Multilevel Strategies“. Zusammen bilden sie einen einzigartigen Fingerprint.