Accelerated nonlinear Gaussianization for feature extraction

A. P. Condurache, A. Mertins

Abstract

In a multi-class classification setup, the Gaussianization represents a nonlinear feature extraction transform with the purpose of achieving Gaussian class-conditional densities in the transformed space. The computational complexity of such a transformation increases with the dimension of the processed feature space in such a way that only relatively small dimensions can be processed. In this contribution we describe how to reduce the computational burden with the help of an adaptive grid. Thus, the Gaussianization transform is able to also handle feature spaces of higher dimensionality, improving upon its practical usability. On both artificially generated and real-application data, we demonstrate a decrease in computation complexity in comparison to the standard Gaussianization, while maintaining the effectiveness.
OriginalspracheEnglisch
TitelProc. of International Conference on Pattern Recognition Applications and Methods (ICPRAM)
Seitenumfang6
ErscheinungsortBarcelona, Spain
Herausgeber (Verlag)ISCRAM
Erscheinungsdatum01.03.2013
Seiten121 - 126
ISBN (Print)978-989856541-9
PublikationsstatusVeröffentlicht - 01.03.2013
Veranstaltung2nd International Conference on Pattern Recognition Applications and Methods - Barcelona, Spanien
Dauer: 15.02.201318.02.2013
Konferenznummer: 97007

Fingerprint

Untersuchen Sie die Forschungsthemen von „Accelerated nonlinear Gaussianization for feature extraction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren