A unified approach for respiratory motion prediction and correlation with multi-task Gaussian Processes

R. Durichen, T. Wissel, F. Ernst, M. A. F. Pimentel, D. A. Clifton, A. Schweikard

Abstract

In extracranial robotic radiotherapy, tumour motion due to respiration is compensated based external markers. Two models are typically used to enable a real-time adaptation. A prediction model, which compensates time latencies of the treatment systems due to e.g. kinematic limitations, and a correlation model, which estimates the internal tumour position based on external markers. We present a novel approach based on multi-task Gaussian Processes (MTGP) which enables an efficient combination of both models by simultaneously learning the correlation and temporal delays between markers. The approach is evaluated using datasets acquired from porcine and human studies. We conclude that the prediction accuracy of MTGP is superior to that of existing methods and can be further increased by using multivariate input data. We investigate the dependency of the number of internal training points and the potential for using the marginal likelihood for model selection.
OriginalspracheEnglisch
Titel2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
Seitenumfang6
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.09.2014
Seiten1-6
ISBN (Print)978-147993694-6
DOIs
PublikationsstatusVeröffentlicht - 01.09.2014
Veranstaltung2014 24th IEEE International Workshop on Machine Learning for Signal Processing - Reims, Frankreich
Dauer: 21.09.201424.09.2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „A unified approach for respiratory motion prediction and correlation with multi-task Gaussian Processes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren