A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability

Volker Patzel, Ulrich Steidl, Ralf Kronenwett, Rainer Haas, Georg Sczakiel*

*Korrespondierende/r Autor/-in für diese Arbeit
103 Zitate (Scopus)

Abstract

Up to now, out of approximately 20 antisense oligodeoxyribonucleotides (asODN) selected and tested against a given target gene, only one species shows substantial suppression of target gene expression. In part, this seems to be related to the general assumption that the structures of local target sequences or antisense nucleic acids are unfavorable for efficient annealing. Experimental approaches to find effective asODN are extremely expensive when including a large number of antisense species and when considering their moderate success. Here, we make use of a systematic alignment of computer-predicted secondary structures of local sequence stretches of the target RNA and of semi-empirical rules to identify favorable local target sequences and, hence, to design more effective asODN. The intercellular adhesion molecule 1 (ICAM-1) gene was chosen as a target because it had been shown earlier to be sensitive to antisense-mediated gene suppression. By applying the protocol described here, 10 ICAM-1-directed asODN species were found that showed substantially improved inhibition of target gene expression in the endothelial cell line ECV304 when compared with the most effective published asODN. Further, 17 out of 34 antisense species (50%) selected on the theoretical basis described here showed significant (> 50%) inhibition of ICAM-1 expression in mammalian cells.

OriginalspracheEnglisch
ZeitschriftNucleic Acids Research
Jahrgang27
Ausgabenummer22
Seiten (von - bis)4328-4334
Seitenumfang7
ISSN0305-1048
DOIs
PublikationsstatusVeröffentlicht - 15.11.1999

Fingerprint

Untersuchen Sie die Forschungsthemen von „A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren