Abstract
Convolutional neural networks (CNNs) provide reliable segmentation results on biomedical images. However, they can only develop their full potential with a representative dataset. Unfortunately, a large dataset is hard to create in biomedical research, since labeling images is time consuming and requires expert knowledge. Active learning seeks to determine those images that will yield the best results, which effectively reduces labeling cost. We present an active learning method for the stepwise identification of images that should be labeled next and test this method on an axon segmentation dataset. We outperform a baseline and a state-of-the-art method.
Originalsprache | Englisch |
---|---|
Seitenumfang | 2 |
Publikationsstatus | Veröffentlicht - 16.02.2020 |
Veranstaltung | AUTOMED - Automation in Medical Engineering 2020 - Lübeck, Deutschland Dauer: 02.03.2020 → 03.03.2020 |
Tagung, Konferenz, Kongress
Tagung, Konferenz, Kongress | AUTOMED - Automation in Medical Engineering 2020 |
---|---|
Land/Gebiet | Deutschland |
Ort | Lübeck |
Zeitraum | 02.03.20 → 03.03.20 |
Strategische Forschungsbereiche und Zentren
- Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
- Querschnittsbereich: Intelligente Systeme
DFG-Fachsystematik
- 4.43-05 Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing