Abstract
The integration of heterogeneous healthcare data sources is a necessary process to enable the secondary use valuable information in clinical research. Data integration is time-consuming for data stewards. The transformation using predefined rules for data harmonization can reduce the time-consuming and error-prone work and ease the data integration at various sites. In our study, we examined various script(ing) languages to find the most suitable candidate for definition of transformation rules and implement a smart editor which supports the data stewards in selecting rules reusing them. Thereby, it also provides an automatic and seamless documentation to strengthen the reliability of the defined transformation rules.
Originalsprache | Englisch |
---|---|
Titel | Volume 270: Digital Personalized Health and Medicine |
Redakteure/-innen | Louise B. Pape-Haugaard, Christian Lovis, Inge Cort Madsen, Patrick Weber, Per Hostrup Nielsen, Philip Scott |
Seitenumfang | 2 |
Band | 270 |
Herausgeber (Verlag) | IOS Press |
Erscheinungsdatum | 16.06.2020 |
Seiten | 1185 - 1186 |
ISBN (Print) | 978-1-64368-082-8 |
ISBN (elektronisch) | 978-1-64368-083-5 |
DOIs | |
Publikationsstatus | Veröffentlicht - 16.06.2020 |
Veranstaltung | 30th Medical Informatics Europe Conference - Geneva's International Conference Center, Geneva, Schweiz Dauer: 28.04.2020 → 01.05.2020 Konferenznummer: 161256 |