A Robot to Shape Your Natural Plant: The Machine Learning Approach to Model and Control Bio-hybrid Systems

Mostafa Wahby, Mary Katherine Heinrich, Daniel Nicolas Hofstadler, Payam Zahadat, Sebastian Risi, Phil Ayres, Thomas Schmickl, Heiko Hamann

Abstract

Bio-hybrid systems-close couplings of natural organisms with technology-are high potential and still underexplored. In existing work, robots have mostly influenced group behaviors of animals. We explore the possibilities of mixing robots with natural plants, merging useful attributes. Significant synergies arise by combining the plants' ability to efficiently produce shaped material and the robots' ability to extend sensing and decision-making behaviors. However, programming robots to control plant motion and shape requires good knowledge of complex plant behaviors. Therefore, we use machine learning to create a holistic plant model and evolve robot controllers. As a benchmark task we choose obstacle avoidance. We use computer vision to construct a model of plant stem stiffening and motion dynamics by training an LSTM network. The LSTM network acts as a forward model predicting change in the plant, driving the evolution of neural network robot controllers. The evolved controllers augment the plants' natural light-finding and tissue-stiffening behaviors to avoid obstacles and grow desired shapes. We successfully verify the robot controllers and bio-hybrid behavior in reality, with a physical setup and actual plants.
OriginalspracheEnglisch
TitelGECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference
Seitenumfang8
ErscheinungsortNew York, NY, USA
Herausgeber (Verlag)ACM
Erscheinungsdatum02.07.2018
Seiten165-172
ISBN (Print)978-1-4503-5618-3
DOIs
PublikationsstatusVeröffentlicht - 02.07.2018
Veranstaltung2018 Genetic and Evolutionary Computation Conference - Kyoto, Japan
Dauer: 15.07.201819.07.2018
Konferenznummer: 137822

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Robot to Shape Your Natural Plant: The Machine Learning Approach to Model and Control Bio-hybrid Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren