Projekte pro Jahr
Abstract
Gaussian Process (GP) regressions have proven to be a valuable tool to predict disturbances and model mismatches and incorporate this information into a Model Predictive Control (MPC) prediction. Unfortunately, the computational complexity of inference and learning on classical GPs scales cubically, which is intractable for real-time applications. Thus GPs are commonly trained offline, which is not suited for learning disturbances as their dynamics may vary with time. Recently, state-space formulation of GPs has been introduced, allowing inference and learning with linear computational complexity. This paper presents a framework that enables online learning of disturbance dynamics on quadcopters, which can be executed within milliseconds using a state-space formulation of GPs. The obtained disturbance predictions are combined with MPC leading to a significant performance increase in simulations with jMAVSim. The computational burden is evaluated on a Raspberry Pi 4 B to prove the real-time applicability.
Originalsprache | Englisch |
---|---|
Seiten | 2051-2056 |
Seitenumfang | 6 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2022 |
Fingerprint
Untersuchen Sie die Forschungsthemen von „A real-time GP based MPC for quadcopters with unknown disturbances“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Abgeschlossen
-
MOMENTUM: Mobile Medizintechnik für die integrierte Notfallversorgung und Unfallmedizin
01.09.19 → 31.05.23
Projekt: Projekte aus Bundesmitteln › Projekte aus Mitteln der Bundesministerien: BMBF