A Probabilistic Framework for Point-Based Shape Modeling in Medical Image Analysis

Heike Hufnagel, Thorsten M. Buzug (Herausgeber*in)

Abstract

In medical image analysis, major areas such as radiotherapy, surgery planning, and quantitative diagnostics benefit from shape modeling to facilitate solutions to analysis, segmentation and reconstruction problems.
Heike Hufnagel proposes a mathematically sound statistical shape model using correspondence probabilities instead of 1-to-1 correspondences. The explicit probabilistic model is employed as shape prior in an implicit level set segmentation. Due to the particular attributes of the new model, the challenging integration of explicit and implicit representations can be done in an elegant mathematical formulation, thus combining the advantages of both explicit model and implicit segmentation. Evaluations are performed to depict the characteristics and strengths of the new model and segmentation method.
OriginalspracheEnglisch
ErscheinungsortWiesbaden
VerlagVieweg+Teubner Verlag
Seitenumfang147
ISBN (Print)978-3-8348-1722-8
ISBN (elektronisch)978-3-8348-8600-2
DOIs
PublikationsstatusVeröffentlicht - 19.09.2011

Publikationsreihe

NameMedizintechnik - Medizinische Bildgebung, Bildverarbeitung und bildgeführte Interventionen
Herausgeber (Verlag)Vieweg+Teubner Verlag

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Probabilistic Framework for Point-Based Shape Modeling in Medical Image Analysis“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren