A First Step Towards Even More Sparse Encodings of Probability Distributions.

Florian Andreas Marwitz, Tanya Braun, Ralf Möller

Abstract

Real world scenarios can be captured with lifted probability distributions. However, distributions are usually encoded in a table or list, requiring an exponential number of values. Hence, we propose a method for extracting first-order formulas from probability distributions that require significantly less values by reducing the number of values in a distribution and then extracting, for each value, a logical formula to be further minimized. This reduction and minimization allows for increasing the sparsity in the encoding while also generalizing a given distribution. Our evaluation shows that sparsity can increase immensely by extracting a small set of short formulas while preserving core information.
OriginalspracheEnglisch
TitelILP
Seitenumfang10
Erscheinungsdatum2021
Seiten183-192
DOIs
PublikationsstatusVeröffentlicht - 2021

Strategische Forschungsbereiche und Zentren

  • Zentren: Zentrum für Künstliche Intelligenz Lübeck (ZKIL)
  • Querschnittsbereich: Intelligente Systeme

Fingerprint

Untersuchen Sie die Forschungsthemen von „A First Step Towards Even More Sparse Encodings of Probability Distributions.“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren