A Fast and Accurate Parallel Algorithm for Non-Linear Image Registration using Normalized Gradient Fields

Lars König, Jan Rühaak

Abstract

We present a novel parallelized formulation for fast non-linear image registration. By carefully analyzing the mathematical structure of the intensity independent Normalized Gradient Fields distance measure, we obtain a scalable, parallel algorithm that combines fast registration and high accuracy to an attractive package. Based on an initial formulation as an optimization problem, we derive a per pixel parallel formulation that drastically reduces computational overhead. The method was evaluated on ten publicly available 4DCT lung datasets, achieving an average registration error of only 0.94 mm at a runtime of about 20 s. By omitting the finest level, we obtain a speedup to 6.56 s with a moderate increase of registration error to 1.00 mm. In addition our algorithm shows excellent scalability on a multi-core system.
OriginalspracheEnglisch
Titel2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)
Seitenumfang4
ErscheinungsortBeijing, China
Herausgeber (Verlag)IEEE
Erscheinungsdatum01.04.2014
Seiten580-583
ISBN (Print)978-1-4673-1961-4
DOIs
PublikationsstatusVeröffentlicht - 01.04.2014
VeranstaltungIEEE International Symposium on Biomedical Imaging (ISBI) 2014 - Beijing, China
Dauer: 29.04.201402.05.2014

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Fast and Accurate Parallel Algorithm for Non-Linear Image Registration using Normalized Gradient Fields“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitieren