Abstract
Factor graphs are a versatile graphical representation of factorizable functions. As a probabilistic graphical model they allow to visualize conditional independence, which can be exploited for efficiently solving inference problems by means of message passing along the nodes of the graph. In this paper, a novel factor graph formulation of the expectation maximization-based estimation technique for affine linear parameter-varying system identification is presented. Furthermore, a recursive reformulation of the algorithm suitable for tracking time-varying changes both accounted and unaccounted for by a pre-defined linear parameter-varying system description is immediate from its factor graph-based formulation.
Originalsprache | Englisch |
---|---|
Titel | 2017 American Control Conference (ACC) |
Seitenumfang | 6 |
Herausgeber (Verlag) | IEEE |
Erscheinungsdatum | 29.06.2017 |
Seiten | 1910-1915 |
Aufsatznummer | 7963231 |
ISBN (Print) | 978-1-5090-5994-2, 978-1-5090-4583-9 |
ISBN (elektronisch) | 978-1-5090-5992-8 |
DOIs | |
Publikationsstatus | Veröffentlicht - 29.06.2017 |
Veranstaltung | 2017 American Control Conference - Sheraton Seattle Hotel , Seattle, USA / Vereinigte Staaten Dauer: 24.05.2017 → 26.05.2017 Konferenznummer: 128855 |