A compressed sensing model of peripheral vision

Jens Hocke, Michael Dorr, Erhardt Barth

Abstract

We here model peripheral vision in a compressed sensing framework as a strategy of optimally guessing what stimulus corresponds to a sparsely encoded peripheral representation, and find that typical letter-crowding effects naturally arise from this strategy. The model is simple as it consists of only two convergence stages. We apply the model to the problem of crowding effects in reading. First, we show a few instructive examples of letter images that were reconstructed from encodings with different convergence rates. Then, we present an initial analysis of how the choice of model parameters affects the distortion of isolated and flanked letters.

OriginalspracheEnglisch
TitelHuman Vision and Electronic Imaging XVII
Redakteure/-innenBernice E. Rogowitz, Thrasyvoulos N. Pappas, Huib de Ridder
Seitenumfang7
Band8291
Herausgeber (Verlag)SPIE
Erscheinungsdatum21.02.2012
Aufsatznummer82910Z
ISBN (Print)9780819489388
DOIs
PublikationsstatusVeröffentlicht - 21.02.2012
VeranstaltungHuman Vision and Electronic Imaging 2012 - San Francisco, USA / Vereinigte Staaten
Dauer: 23.01.201226.01.2012
http://users.eecs.northwestern.edu/~pappas/hvei/past.html

Zitieren