Das Vorhaben befasst sich mit allgemeingültigen rechnerbasierten Methoden zur Deutung komplexer stationärer oder zeitveränderlicher visueller Szenen aus der Alltagswelt, z.B. Innenraumszenen im Kontext von Assistenzaufgaben oder Verkehrsszenen im Kontext von Überwachungsaufgaben. Szeneninterpretationen dieser Art erfordern einerseits umfangreiches Vorwissen über die relevanten Alltagsvorgänge, repräsentierbar mit Methoden der Wissensrepräsentation, andererseits probabilistische Modelle zur Steuerung unsicherer Entscheidungen und zur Prädiktion. In diesem Vorhaben wird eine besondere Form der Integration von probabilistischen Modellen mit formaler Wissensrepräsentation untersucht, bei der probabilistische Inferenzen mit klassischen logikbasierten Inferenzen bei der Szeneninterpretation kooperieren. Logikbasierte Inferenzen grenzen den Raum möglicher konsistenter Szeneninterpretationen ab, während probabilistische Inferenzen unter den logisch möglichen Interpretationen bevorzugte bestimmen.
Im Projekt PRAESINT wurde eine Theorie für die Szeneninterpretation entwickelt, die auf einer Kombination von prädikatenlogisch und probabilistisch modelliertem Wissen fußt. Dabei wurden für Teilaspekte unterschiedliche konkrete Repräsentationsformen untersucht (z.B. Beschreibungslogik, Prädikatenlogik und Markov-Logik) sowie neue Repräsentationsformen entwickelt, insbesondere für die Repräsentation von und Inferenz mit probabilistischem Wissen (Bayes’sche Kompositionelle Hierarchien). Als Grundlage für die Definition einer Szeneninterpretation haben sich Konstruktionsoperatoren (Aggregierung, Teileerzeugung, Spezialisierung und Verschmelzung) bewährt, mit denen ausgehend von Eingaben (Evidenz r) ein Konstruktionssuchraum aufgespannt werden kann, in dem sich Lösungen für das Interpretationsproblem als wahrscheinlichste Konstruktionen I ergeben. Der theoretische Ansatz wurde durch zwei Implementierungen gestützt, die jeweils unterschiedliche Aspekte komplementär beleuchten. In den Untersuchungen erfolgte in einem Ansatz eine operationale Realisierung des Interpretationssystems aus den Wissensbasen durch Generierung einer Constraint- und regelbasierten Interpretationsmaschine (System SCENIOR). In dem anderen Ansatz (RMI-Maschine) wurde untersucht, wie die elementaren Konstruktionsschritte als logische Inferenz (Abduktion und Deduktion) begriffen werden können. Mit Abduktion können auch mehrere Modellinstanzen pro Szene hergeleitet werden. Während, etwas vereinfach ausgedrückt, im ersten Ansatz (SCENIOR) argmax i P(Γ, I) als Optimierungskriterium gewählt wurde, konnte im zweiten Ansatz (RMI) gezeigt werden, dass sich auch argmax i P(Γ | I) als Formulierung eines Präferenzmaßes für I eignet. Die Bestimmung der P-Werte erfolgte auf verschiedene Weisen, einmal über eine Implementierung des BCH-Formalismus, im anderen Fall über externe Markov-Logik-Schlussverfahren (Alchemy). In beiden Implementierungen wurde die (optimale) Lösung im Konstruktionsraum durch Approximation mittels lokaler Gradientensuche und Strahlsuche realisiert, so dass Realzeitsysteme mit der gewünschten Funktionalität entstanden. Durch die Arbeiten in PRAESINT wurde die prädikatenlogische Formalisierung von Interpretationswissen und Interpretationsverfahren (Möller & Neumann, 2008) unseres Erachtens wegweisend um probabilistisches Wissen erweitert. Die Logik definiert den grundsätzlichen Interpretationsraum, das probabilistische Wissen favorisiert darin enthaltene Instanzen als Lösungen des Interpretationsproblems. Für beide im Projekt PRAESINT entwickelten komplementären Ansätze konnte in konkreten Implementierungen gezeigt werden, dass Eingabedaten Γ trotz Beschränkungen von Zeit- und Platzressourcen um bedeutungstragende Interpretationen I angereichert werden können, die für praktische Anwendungen verwendbar und nützlich sind.